ABOUTMore+

ABOUT

    Shenzhen CosmicLaw Environmental Technology Co., Ltd.‌‌    Established in 2016 and headquartered on the 13th Floor, Building 9, No. 2 Jinlong Avenue, Baolong Community, Baolong Street, Longgang District, Shenzhen, we are a high-tech environmental protection enterprise specializing in wastewater treatment, pure water production systems, exhaust gas treatment equipment, MBR membranes, and RO membranes.    Equipped with internationally advanced fully automated MBR membrane production lines and state-of-the-art manufacturing facilitie...

Company News‌

How RO Membranes Achieve 99.9% Salt Rejection: The Complete Scientific Guide to Reverse Osmosis Tech

Keywords: RO membrane working principle,reverse osmosis desalination mechanism,high salt rejection technology,polyamide composite membrane,water treatment membrane science,How RO filters remove salts,industrial

Source: 本站    Author : 乾元环境   Date: May-10-2025 Visits: 107

Reverse Osmosis (RO) membranes represent a pinnacle of modern water purification technology, achieving unprecedented 99.9% salt rejection through sophisticated molecular engineering. This 2000+ word guide deciphers the science behind this water revolution, combining molecular dynamics, materials engineering, and industrial applications.

LongClear RO Mem.jpg


I. The Physics of Osmotic Warfare: Principles of Reverse Osmosis

1. Natural Osmosis Dynamics

When a semipermeable membrane separates solutions of different concentrations (e.g., seawater vs freshwater), water molecules spontaneously flow from low to high concentration. Calculated by Van't Hoff's equation:
π = iCRT
(Where: i = ionization factor, C = molar concentration, R = gas constant 8.314 J/(mol·K), T = absolute temperature)

For 25°C seawater (TDS 35,000 mg/L):

  • Osmotic pressure π≈28 bar (equivalent to 280m water column)

  • Practical systems require Δp>32 bar for reversal

2. Reverse Osmosis Energy Mechanics

High-pressure pumps (up to 80 bar) create hydraulic gradient for molecular inversion. Solvent flux equation:
Jw = A(ΔP - Δπ)
(A = membrane permeability coefficient)

Key Parameter Comparison:

ScenarioHousehold SystemsSeawater Plants
Pressure (bar)2-460-80
Salt Rejection98%99.9%
Energy (kWh/m³)0.33-10

II. Nano-Architecture: The Molecular Courtroom

1. Trilayer Composite Structure

  • Support Layer (120μm): Polyester non-woven fabric, compressive strength >800 psi

  • Porous Layer (40μm): Polysulfone matrix, 0.01-0.1μm pores, rejection >99.95%

  • Active Layer (200nm): Polyamide film, 0.1-1nm pores (2× water molecule size)

2. Molecular Sieving Scale Comparison

ContaminantSize RangePore Multiple
Water Molecule0.28nm1:1
Sodium Ion0.19nm1:1.5
Heavy Metal Ions0.3-0.5nm1:3-5
Viruses20-300nm200-3000×
Bacteria500-5000nm5000-50,000×

III. Mass Transfer Theories: Scientific Discourse

1. Solution-Diffusion Model (1965)

  • Core Concept‌: Homogeneous non-porous membrane

  • Three-stage Transport‌:

    1. Sorption at membrane surface

    2. Diffusion through polymer matrix

    3. Desorption on permeate side

  • Equation‌: Js = B(Cm - Cp) (B = solute permeability)

2. Preferential Sorption-Capillary Flow (1970)

  • Key Insight‌: 0.2-1nm surface nanopores

  • Hydrogen Bond Mechanism‌:

    • Carbonyl oxygen forms H-bond network

    • 3Å hydration layer preferentially adsorbed

    • Steric exclusion of solutes

3. Modern Hybrid Model

Unifies both theories:

  • Solution-diffusion dominates high salinity

  • Capillary flow prevails in low salinity

  • Transition zones show mixed transport


IV. Six Golden Parameters for Optimal Performance

  1. Pressure Control‌: Optimal ΔP=1.25×π (3-stage boosting in industrial systems)

  2. Temperature Management‌: 1°C rise → 3% flux increase (Max 45°C)

  3. pH Tolerance‌: PA membranes 4-11 (CA membranes 5-6)

  4. Fouling Prevention‌:

    • LSI <0 (anti-scalant required)

    • Chlorine <0.1ppm for biofouling control

  5. Recovery Rate‌: 40-50% (household) vs 70-75% (industrial)

  6. Cleaning Protocols‌:

    • Inorganic: pH2 citric acid cycling

    • Organic: 0.1% SDBS solution

    • Biological: DBNPA biocide shock


V. Technological Evolution & Industrial Applications

1. Historical Milestones

  • 1959: Cellulose acetate membrane discovery (UCLA Reid)

  • 1980: Polyamide TFC membrane commercialization (Dow)

  • 2020: Graphene membrane prototypes (60% energy reduction)

2. Application Matrix

ApplicationMembrane TypeSpecificationsCase Study
Seawater DesalinationSWC655bar, 99.8% rejectionSaudi Jubail Phase III
Ultrapure WaterESPA2+18.2MΩ·cm resistivitySemiconductor rinse water
Household PurificationTW303bar, 1.2m³/d fluxBrand X RO System
Industrial ReuseHRLE-440i85% recovery rateTextile ZLD Project

VI. Future Frontiers in RO Technology

  1. Biomimetic Aquaporin Membranes

  2. Forward Osmosis-RO Hybrid Systems

  3. Smart Responsive Membranes (pH/temperature)

  4. Photovoltaic Direct-Drive RO (Energy <2kWh/m³)